
Announcements
Always be looking ahead:

OpenSource
Demo/Findings (next week) – AWS Academy confirm access

today and if you are using it or demo from laptop

Exam #1 on Tue Feb 15
There will be a lot on the exam that comes only from the

readings. Catch up now!

Project
ERP Research & App Selection – must procure asap

Stand-alone: Tie In (not expected at R1)

R1 (and check rubric) *Shall we negotiate?

http://www.se.rit.edu/~swen-343/resources/studyguides/Exam1StudyGuide.html
http://www.se.rit.edu/~swen-343/project/projectdeliverables.html

First a word about

Leadership

SWEN-343

Leadership

What is a leader?

A Leader is Not

Telling people what to do

Someone who plays the blame game

Zuckerberg spends most of this time asking

questions

A Leader is

1.Helping others in time of need

2.Being prepared

3.Leading by example

4.Being the SME (Subject Matter Expert)

Companies want leaders, even if you’re not

the boss or you’re “at the bottom"

How Can you Be Leader on Your

Team(s)?

Systems Integration

SWEN-343

Project Notes - Will need APIs Between Components

Support component stubbing

Separate (sometimes disparate) group concerns
Grading

Customer requirements

Testing/security

Interchangeability
Project risks

Changing Requirements (ask the customer!)

Properly modeling & architecture

Agenda

Challenges to overcome

Techniques for integration

Key Questions

How to integrate?

At the flip of a switch?

Components/piecemeal?

What levels?

How to break up work?

Who is responsible

How to test?

Was integrated correctly the 1st time?

Root cause of discovered errors

They will happen

Systems Integration is the process of:

“Assembling the constituent parts of a system

in a logical, cost-effective way,

comprehensively checking system execution

(all nominal & exceptional paths), and including

a full functional check-out.”

Integration Tips

Systems integration should be done at the

system level
Why not unit?

coupling

others…..

Don’t make it a “backend” task
May actually be a primary driver for

architectural/design decisions.

Some Integration Concerns

Technological

Security

Scalability

Reliability

Maintainability

Phases of Integration

What components do you need/not need?
What are the nice to haves & what are the risks

How will it map into your current design &

components?

Select appropriate systems

Subsystem integration

Integration, analysis, verification
analysis → functionality, security, performance

Systems Integration: Big Bang Flaws

Integration starts late because of late components, resulting in a

flawed and immature delivery.

Integration is expected to occur instantaneously, feeding an

abbreviated and incomplete Test process, in order to recover

schedule and meet the delivery deadline

Focus is on components rather than system capabilities; the

Integration team rarely understands the overall system

concepts

Integration starts when the hardware and software are ready, so

it uses the delivered hardware and software for all activities

Recommended Process

Adopt a Continuous Integration model rather than a Big Bang Integration

model. Establish an Integration rhythm that is essentially independent

of the development team.

Create a Systems Integration team of Responsible Engineers that knows

the entire system and follows the program from Requirements

Definition through Acceptance Testing and Operations. Design and

Test engineers provide required support to REs during integration

Manage system integration and system test based upon subsystems that

can be end-to-end tested against system level requirements; manage

system design & development based upon components that can be

independently developed and checked.

Recommended Process (con’t)

Define a Configuration Management process such that the System

Integration and Configuration Management Teams build and

control the hardware & software configurations.

Develop component and subsystem specifications to the extent

that they are needed in order to define component checkout &

subsystem verification procedures.

Perform component-level checkout to satisfy Integration entry

criteria.

Continuously perform regression testing; create internal and/or

external automated test tools that greatly reduce the emphasis

on man-in-the-loop testing.

Recommended Process (con’t)

Track integration progress based upon completing subsystems that

have been verified end-to-end against system-level requirements.

Augment requirements-driven testing with stress testing and long

mission threads testing in order to promote a robust system.

Create a System Architecture Skeleton (SAS) very early in the

program and use it as the framework for Subsystem Integration as

components are added incrementally

Integration

Integration Testing

You will be (likely) using many

technologies/components
Maybe more than you think

How will you ensure that all items are properly

integrated?

How will you find problems?

How will you determine who should fix the

problems?

Integration Testing Strategies

Types of Integration Testing:
Bottom-up: Drivers & stubs

Top down: Top layer & then sub layers

Sandwich: Target (middle) & then converge

Big bang = bad (What was historically done)

How you integrate will largely determine your

strategy.

Which to Choose?

Scheduling concerns.

Which parts of most critical/produce most

concerns?

Component availability.

Infrastructure/hardware available?

Integration Testing: For Your Project

Define a testing strategy
For your team

Across all teams

Clearly define the expectations and agree to

them

What roles should do it?

Assign point people
“Joe/Susie is responsible”

Verify the Need to Integrate First

Do you need to keep the legacy system

active? Do you even need to connect to it?
Don’t throw good money after bad.

Long term viability?

Security and reliability.

Discover the Integration Type

Real-time integration: Alerts & updates

information through integrate systems at the

instant the change is made
Expensive

Risks?

Make Sure the Data is Clean

Eliminate redundant records

Fit into your system/process

Watch For System Overlaps

Do new/existing apps already cover what the

legacy system is doing?
The more you have, the more you have to maintain

Possible security vulnerabilities

Integration Testing Types

Dummy objects are passed around but never actually used. Usually they are

just used to fill parameter lists.

Fake objects actually have working implementations, but usually take some

shortcut which makes them not suitable for production (an in memory

database is a good example).

Stubs provide canned answers to calls made during the test, usually not

responding at all to anything outside what's programmed in for the test.

Stubs may also record information about calls, such as an email gateway

stub that remembers the messages it 'sent', or maybe only how many

messages it 'sent'.

Mocks Objects pre-programmed with expectations which form a

specification of the calls they are expected to receive.

http://martinfowler.com/articles/mocksArentStubs.html

Integration Testing Lifecycles
Test lifecycle with stubs:

1. Setup - Prepare object that is being tested and its stubs collaborators.

2. Exercise - Test the functionality.

3. Verify state - Use asserts to check object's state.

4. Teardown - Clean up resources.

Test lifecycle with mocks:

1. Setup data - Prepare object that is being tested.

2. Setup expectations - Prepare expectations in mock that is being used by primary

object.

3. Exercise - Test the functionality.

4. Verify expectations - Verify that correct methods has been invoked in mock.

5. Verify state - Use asserts to check object's state.

6. Teardown - Clean up resources.

Recap

Integration concerns:

Types of integration testing:

“Faked Objects”

Recap

Integration concerns: Technology, security,

scalability, reliability, maintainability

Types of integration
bottom, top, sandwich, big-gang (bad)

“Faked Objects”
Dummy: Just fill parameters

Fake: Work, but take shortcut

Stub: Canned responses

Mock: More robust, pre programmed.

Release 1

http://www.se.rit.edu/~swen-

343/project/projectdeliverables.html

http://www.se.rit.edu/~swen-343/project/projectdeliverables.html

Roles teams huddle

Responsibilities → document on Trello & Post on Slack

#general as agreements by which you will be held accountable.

Integration Questions/Suggestions/Answers

from slides → each huddle captures into separate Google doc to

be shared back with silos and consolidated by Team Coordinators

Unknowns/TBDs/Risk → document as Spikes into Trello and

assign individual(s) responsible

“Risks”

